(x+4)(2x-7)=63^2

Simple and best practice solution for (x+4)(2x-7)=63^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+4)(2x-7)=63^2 equation:



(x+4)(2x-7)=63^2
We move all terms to the left:
(x+4)(2x-7)-(63^2)=0
We add all the numbers together, and all the variables
(x+4)(2x-7)-3969=0
We multiply parentheses ..
(+2x^2-7x+8x-28)-3969=0
We get rid of parentheses
2x^2-7x+8x-28-3969=0
We add all the numbers together, and all the variables
2x^2+x-3997=0
a = 2; b = 1; c = -3997;
Δ = b2-4ac
Δ = 12-4·2·(-3997)
Δ = 31977
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{31977}=\sqrt{9*3553}=\sqrt{9}*\sqrt{3553}=3\sqrt{3553}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{3553}}{2*2}=\frac{-1-3\sqrt{3553}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{3553}}{2*2}=\frac{-1+3\sqrt{3553}}{4} $

See similar equations:

| 329,7-7*x=8*x  | | 329,7-7x=8x  | | 6.24x+6.24=12.48 | | -2x+4.75=-2x–8.75 | | 7-x+5x=47 | | 2+5v=-v+2(1+7v) | | 3x+2(2x=6)=-6 | | 6-(2x-2)=9+x | | x+(19-17)=63 | | (25x/12x)+(30/12x)=10/3 | | x=-4+7+(-6) | | (3x+6)/(4x+6)=4/5 | | 3(-11)-5y=-30 | | p/5=–1/4 | | 25x/12x+30/12x=10/3 | | p/5=–14 | | 5/9w-2=4w-7/3 | | 3(1.6)-2y=10 | | 6.7a+14=81 | | -21+a=7(6a-3) | | -3(y-2)=2(y+6)+7 | | -x/3+4=-8 | | x2+2=13 | | x=19-17=63 | | 1.6x=48 | | 2/5b=40 | | x^2−8x=0 | | 5x+6(-36)=-76 | | 6(8n-1)=-6+5n | | 1a+1=-2 | | 3(x+3)=47 | | 2x+4=-10=4x |

Equations solver categories